

Outline

• Overview

• Motivation, concept and example

• Theoretical results

• Problem setting and theorems

Motivation

• Utility of user data with private information

• e.g., microgrid

Need for control method considering privacy protection

Privacy protection on dynamical systems

Privacy protection by adding noise (differential privacy or DP)

• Difficulty of distinguishing $u_1(t)$ and $u_2(t)$ = Privacy level

Privacy protection on dynamical systems

• Privacy protection by adding noise (differential privacy or DP)

• Difficulty of distinguishing $u_1(t)$ and $u_2(t)$ = Privacy level

 \circ To be considered

- What types of input signal pairs $(u_1(t), u_2(t))$ can we protect?
- \circ Noise scale? \rightarrow Large noise decreases the information usefulness

"Privacy protection level vs. information usefulness" ^[1]

Adversary

Previous research

• Privacy protection by adding Gaussian noise^[2, 3]

^[2] J. Le Ny and G. J. Pappas, "Differentially private filtering," *IEEE Trans. Automat. Control*, vol. 59, no. 2, pp. 341–354, Feb. 2014.

[3] Y. Kawano and M. Cao, "Design of privacy-preserving dynamic controllers," IEEE Trans. Automat. Control, vol. 65, no. 9, pp. 3863–3878, Sep. 2020.

[4] A. Triastcyn and B. Faltings, "Bayesian differential privacy for machine learning," in Proc. Int. Conf. Mach. Learn., Nov. 2020, pp. 9583–9592.

Example: Private data with prior distribution

- With prior information, r(t) is **easily estimated** from y(t)
 - \circ e.g., r(t) concentrates on the low frequency range
 - \circ Need for larger noise \rightarrow "Privacy protection level vs. information usefulness"

Example: Private data with prior distribution

Outline

• Overview

Motivation, concept and example

• Theoretical results

• Problem setting and theorems

Differential privacy for dynamical systems

(ε, δ) -differential privacy*

For given $\varepsilon > 0$, (\bigstar) satisfies ε - Differential privacy (ε - DP)

$$\frac{\mathbb{P}[Y_{w,T}^{1} \in S]}{\mathbb{P}[Y_{w,T}^{2} \in S]} \leq e^{\varepsilon} \quad \forall S \subset \mathbb{R}^{(T+1)q}$$

$$N_{T}U_{T}^{2} + W_{T}$$

for similar (U_T^1, U_T^2)

$$||U_T^1 - U_T^2|| \le c, \ c > 0$$

* For the simplicity of the presentation, we take $\delta = 0$.

Main Problem: Conventional differential privacy

Problem

Provide the privacy notion which guarantees difficulty of distinguishing (U_T^1, U_T^2) even if $||U_T^1 - U_T^2|| > c$

Required level of difficulty of distinguishing data

Uniform over similar data Weighted in terms of prior distribution

Conventional DP: Protecting only "similar" data

Main result 1 Bayesian differential privacy for dynamical systems $Y_{wT} = N_T U_T + W_T \cdots (\star)$

* For the simplicity of the presentation, we take $\delta = 0$.

Main result 2 Gaussian noise guaranteeing BDP

 $(\mathbb{P}_{U_T}, \gamma, \varepsilon, \delta)$ -BDP is satisfied if $\Sigma_w > 0$ is chosen such that

$$\lambda_{\max} \left(\Sigma_u^{1/2} N_T^{\mathsf{T}} \Sigma_w^{-1} N_T \Sigma_u^{1/2} \right)^{1/2} \le \frac{1}{c(\gamma, T)} R^{-1}(\varepsilon)$$

become smaller when Σ_w is large (low information utility) become smaller when ε is small γ is large (High privacy level)

How to maximize information usefulness with privacy guarantee?

* For the simplicity of the presentation, hereafter we omit the argument δ of the function R

Main result 3 Optimal Gaussian noise guaranteeing BDP

$$Y_{w,T} = N_T U_T + W_T \cdots (\bigstar) \qquad \begin{array}{l} U_T \sim \mathcal{N}(0, \Sigma_u) \\ \text{Prior distr.} \\ U_T \longrightarrow (\bigstar) \qquad Y_{w,T} \qquad W_T \sim \mathcal{N}(\mu_w, \Sigma_w) \\ \text{Design parameter} \end{array} \qquad \left[\begin{array}{cccc} N_T \coloneqq \begin{bmatrix} D & 0 & \cdots & \cdots & 0 \\ CB & D & \ddots & \ddots & \vdots \\ CAB & CB & D & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ CA^{T-1B} & CA^{T-2B} & \cdots & CB & D \end{bmatrix} \right] \\ \left[\begin{array}{c} \min_{\Sigma_w > 0} & \text{Tr}(\Sigma_w) \\ \text{s. t.} & (\text{sufficient condition for BDP)} & \leftarrow \text{LMI constraint} \end{array} \right]$$

Assumption: N_T has full row rank Minimum energy Gaussian noise guaranteeing BDP is $\Sigma_w^* \coloneqq c(\gamma, T)^2 R(\varepsilon)^2 N_T \Sigma_u N_T^{\top}$

 $Y_T = N_T U_T$

 W_T having the same shape of distr. as Y_T can efficiently protect U_T

Main result 4 Input noise mechanism

$$V_{T} \coloneqq \begin{bmatrix} D & 0 & \cdots & \cdots & 0 \\ CB & D & \ddots & \ddots & \vdots \\ CAB & CB & D & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ CA^{T-1}B & CA^{T-2}B & \cdots & CB & D \end{bmatrix}$$

Assumption: N_{T} is regular
$$Y_{\nu,T} = N_{T}U_{T} + N_{T}V_{T}$$
$$V_{T} \sim \mathcal{N}(0, \Sigma_{\nu})$$

Design parameter

In input noise case,

- sufficient condition for BDP guarantee
- optimal Gaussian noise are independent of system parameters

BDP Condition:
$$\lambda_{\min} \left(\Sigma_u^{-1/2} \Sigma_v \Sigma_u^{-1/2} \right)^{1/2} \ge c(\gamma, T) R(\varepsilon)$$

Opt. noise: $\Sigma_{v}^{*} = c(\gamma, T)^{2}R(\varepsilon)^{2}\Sigma_{u}$

15 / 16

Summary

• Objective

- To protect input data to control systems
 - Previous research does not consider distant data sets

• Results

- Introduced Bayesian differential privacy (BDP) to linear dynamical systems
 - Provided privacy guarantees even for distant data sets
 - Derived the minimum energy Gaussian noise guaranteeing BDP
 - Privacy VS. information utility
- Future work
 - Privacy protection in the infinite horizon
 - Difficulty: our privacy parameter $c(\gamma, T)$ is increasing function of T
 - \circ Noise $\rightarrow \infty$ as $T \rightarrow \infty$

BDP condition: $\lambda_{\min} \left(\Sigma_u^{-1/2} \Sigma_v \Sigma_u^{-1/2} \right)^{1/2} \ge c(\gamma, T) R(\varepsilon)$

