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Motivation
◦ Utility of user data with private information
◦ e.g., microgrid

◦ Input signal to ② is influenced by the consumption pattern of ①
◦ Risk of consumption data leakage

Controller Controller

Power 
consumption data

Need for control method considering privacy protection

① ②
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◦ Privacy protection by adding noise (differential privacy or DP)
◦ Difficulty of distinguishing 𝑢! 𝑡 and 𝑢"(𝑡) = Privacy level

Privacy protection on dynamical systems

Adversary

System
𝑦(𝑡)𝑢!(𝑡) or 𝑢"(𝑡)

I know the system dynamics 

Estimate input from publish output
𝑢!(𝑡) and 𝑢"(𝑡) are distinguishable

Private data
e.g., power consumption data

Published 
output signal

Risk of private data leakage
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◦ Privacy protection by adding noise (differential privacy or DP)
◦ Difficulty of distinguishing 𝑢! 𝑡 and 𝑢"(𝑡) = Privacy level

◦ To be considered
◦ What types of input signal pairs (𝑢! 𝑡 , 𝑢" 𝑡 ) can we protect?
◦ Noise scale? → Large noise decreases the information usefulness

“Privacy protection level vs. information usefulness” [1]

Privacy protection on dynamical systems

[1] Y. Kawano, K. Kashima, and M. Cao, “Modular control under privacy protection: Fundamental trade-offs,” Automatica, vol. 127, May 2021, Art. no. 109518.

System

𝑤(𝑡) Noise

𝑦#(𝑡)
Published 
output signals

𝑦(𝑡)𝑢!(𝑡) or 𝑢"(𝑡)

Estimate input from publish output
𝑢! 𝑡 and 𝑢" 𝑡 are indistinguishable

Private data
e.g., power consumption data

𝑢! 𝑡 or 𝑢" 𝑡 ,
which one?

Adversary
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◦ Privacy protection by adding Gaussian noise[2, 3]

𝑢! and 𝑢" are similar

||𝑢! − 𝑢"|| ≤ 𝑐
def

𝑢! and 𝑢" are far apart

[2] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Trans. Automat. Control, vol. 59, no. 2, pp. 341–354, Feb. 2014.
[3] Y. Kawano and M. Cao, “Design of privacy-preserving dynamic controllers,” IEEE Trans. Automat. Control, vol. 65, no. 9, pp. 3863–3878, Sep. 2020.
[4] A. Triastcyn and B. Faltings, “Bayesian differential privacy for machine learning,” in Proc. Int. Conf. Mach. Learn., Nov. 2020, pp. 9583–9592.

• Providing privacy guarantees even for outlier data
• For static data, it has been studied as Bayesian DP[4]

Previous research

(predetermined)Privacy is guaranteed only for similar data
Privacy protection of outlier data is NOT considered

Previous research

𝑤 𝑡 ∼ 𝒩(𝜇# , Σ#)

𝑦#(𝑡)
System

Published 
output signals𝑦(𝑡)

𝑢!(𝑡) or 𝑢"(𝑡)
private data +

This talk
Utilizing the prior distribution of the data for 
privacy protection of dynamical systems
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𝑢(𝑡) 𝑦(𝑡)
𝒮

noise 𝑤(𝑡)

𝑦#(𝑡)
+

𝒮 ∶ #𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 , 𝑥 0 = 0
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 I know 𝒮 and prior distr. of 𝑈(

Problem setting

Adversary

Prior distr.

Public output

𝑥 ∈ ℝ) : state, 𝑢 ∈ ℝ* : input, 𝑦 ∈ ℝ+ : output

Private data

Noise
𝑁# ≔

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 𝐷 ⋱ ⋱ ⋮
𝐶𝐴𝐵 𝐶𝐵 𝐷 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

𝐶𝐴#$!𝐵 𝐶𝐴#$"𝐵 ⋯ 𝐶𝐵 𝐷

• 𝑌.,/ ≔
𝑦.(0)
⋮

𝑦. 𝑇
= 𝑁/𝑈/ +𝑊/

• 𝑈/ ≔
𝑢(0)
⋮

𝑢 𝑇
∼ 𝒩(0, Σ0)

• 𝑊/ ≔
𝑤(0)
⋮

𝑤 𝑇
∼ 𝒩(0, Σ.)
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◦With prior information, 𝑟(𝑡) is easily estimated from 𝑦(𝑡)
◦ e.g., 𝑟(𝑡) concentrates on the low frequency range
◦ Need for larger noise → “Privacy protection level vs. information usefulness” 

𝒮 ∶ 2𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝑟 𝑡 + 𝑣(𝑡) ,
𝑦 𝑡 = 𝐶𝑥 𝑡

Example:
Private data with prior distribution

𝒞
𝑦(𝑡)

+

− 𝒫Private data

𝑣 𝑡 Intentional noise
+

𝑟 𝑡
𝜉 𝑡

White noise
Reference
model

I know both system dynamics and 
reference model.

𝒮

Frequency domain 
reference model 
(Low pass filter)

𝑮𝒓→𝒚
G	plant

𝑮𝒓→𝒆
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Example:
Private data with prior distribution

𝒞
𝑦 𝑡

+

− 𝒫+

𝑟 𝑡

Optimal i.i.d. noise
(not tracking at all)

Optimal noise
(Minor deterioration)

Guaranteeing
the same privacy level

Noise-free
(good tracking, no pricacy)

𝜉 𝑡

Reference

𝑣 𝑡 Intentional noise
White noise 𝒮 ∶ 2𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 + 𝐵 𝑟 𝑡 + 𝑣(𝑡) ,

𝑦 𝑡 = 𝐶𝑥 𝑡Reference
model
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𝑌#,) = 𝑁)𝑈) +𝑊)⋯(★)

(★)
𝑈) 𝑌#,)

For given 𝜀 > 0, (★) satisfies
𝜀 - Differential privacy (𝜀 - DP)

ℙ 𝑌.,/D ∈ 𝑆
ℙ 𝑌.,/E ∈ 𝑆

≤ 𝑒F ∀𝑆 ⊂ ℝ /GD H

for similar 𝑈/D, 𝑈/E

def

𝑁(𝑈(" +𝑊(

𝜀, 𝛿 -differential privacy*

||𝑈(! − 𝑈("|| ≤ 𝑐, 𝑐 > 0

ℙ 𝑌#,(! ∈ 𝑆
ℙ 𝑌#,(" ∈ 𝑆

≤ 𝑒-

𝜀:small
↓

distr. of 𝑌#,)! and 𝑌#,)" are close
↓

difficult to distinguish 𝑈)!, 𝑈)"

𝑌#,(! 𝑌#,("

Differential privacy for dynamical systems

* For the simplicity of the presentation, we take 𝛿 = 0.
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Difficulty of distinguishing data

LessMoreConventional DP：
Protecting only “similar” data

Provide the privacy notion which guarantees
difficulty of distinguishing 𝑈/D, 𝑈/E even if ||𝑈/D − 𝑈/E|| > 𝑐

Problem

𝑈)
𝑈)*

Uniform over similar data Weighted in terms of prior distribution

𝑈)
𝑈)*

𝑐

Main Problem:
Conventional differential privacy

Required level of difficulty of distinguishing data
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𝑈/D, 𝑈/E: i. i. d. with the distr. ℙN&
For given 1 ≥ 𝛾 ≥ 0, 𝜀 > 0, (★) satisfies
ℙN& , 𝛾, 𝜀 -Bayesian differential privacy ( ℙN& , 𝛾, 𝜀 - BDP)

ℙN&
ℙO 𝑌.,/D ∈ 𝑆 𝑈/D

ℙO 𝑌.,/E ∈ 𝑆 𝑈/E
≤ 𝑒F ≥ 𝛾 ∀𝑆 ⊂ ℝ /GD H

ℙN& , 𝛾, 𝜀, 𝛿 -Bayesian differential privacy*

𝑌#,) = 𝑁)𝑈) +𝑊)⋯(★)

(★)
𝑈) 𝑌#,)

Small 𝜀 = High privacy level
Large 𝛾 = High privacy level even for 

far apart data pair 𝑈5 , 𝑈56

def

c.f.) 𝜀 – DP
ℙ 𝑌#,)! ∈ 𝑆
ℙ 𝑌#,)" ∈ 𝑆

≤ 𝑒+ ∀𝑆 ⊂ ℝ ),! -

* For the simplicity of the presentation, we take 𝛿 = 0.

Main result 1
Bayesian differential privacy for dynamical systems
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𝜆XYZ Σ0
D/E𝑁/\Σ.]D𝑁/Σ0

D/E D/E
≤

1
𝑐 𝛾, 𝑇

𝑅]D 𝜀

ℙN& , 𝛾, 𝜀, 𝛿 -BDP is satisfied if Σ. ≻ 0 is chosen such that

𝑁# ≔

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 𝐷 ⋱ ⋱ ⋮
𝐶𝐴𝐵 𝐶𝐵 𝐷 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

𝐶𝐴#$!𝐵 𝐶𝐴#$"𝐵 ⋯ 𝐶𝐵 𝐷

𝑈( ∼ 𝒩(0, Σ.)
Prior distr.

become smaller
when Σ# is large 
(low information utility)

become smaller
when 𝜀 is small 

𝛾 is large
(High privacy level)

Main result 2
Gaussian noise guaranteeing BDP

𝑊( ∼ 𝒩(𝜇#, Σ#)
Design parameter

𝑌#,( = 𝑁(𝑈( +𝑊(⋯(★)

(★)
𝑈( 𝑌#,(

How to maximize information usefulness with privacy guarantee?
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* For the simplicity of the presentation, hereafter we omit the argument 𝛿 of the function 𝑅



`
min
^'≻`

Tr Σ.
s. t. (sufeicient condition for BDP)

Assumption: 𝑁/ has full row rank
Minimum energy Gaussian noise guaranteeing BDP is 

Σ.∗ ≔ 𝑐 𝛾, 𝑇 E𝑅 𝜀 E𝑁/Σ0𝑁/\

𝑌) = 𝑁)𝑈)

𝑁/
𝑈) 𝑌)

𝑊/ having the same shape of distr. as 𝑌/
can efficiently protect 𝑈/

Main result 3
Optimal Gaussian noise guaranteeing BDP

𝑁# ≔

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 𝐷 ⋱ ⋱ ⋮
𝐶𝐴𝐵 𝐶𝐵 𝐷 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

𝐶𝐴#$!𝐵 𝐶𝐴#$"𝐵 ⋯ 𝐶𝐵 𝐷

𝑈( ∼ 𝒩(0, Σ.)
Prior distr.

𝑊( ∼ 𝒩(𝜇#, Σ#)
Design parameter

𝑌#,( = 𝑁(𝑈( +𝑊(⋯(★)

(★)
𝑈( 𝑌#,(

LMI constraint
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𝑁/
Private information

𝑌b,/𝑈/

𝑉/
+

Public output

𝑁! ≔

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 𝐷 ⋱ ⋱ ⋮
𝐶𝐴𝐵 𝐶𝐵 𝐷 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0

𝐶𝐴!"#𝐵 𝐶𝐴!"$𝐵 ⋯ 𝐶𝐵 𝐷
Assumption: 𝑁# is regular

𝑌b,/ = 𝑁/𝑈/ +𝑁/𝑉/
𝑉5 ∼ 𝒩(0, Σ7)

Design parameter

In input noise case,
• sufficient condition for BDP guarantee
• optimal Gaussian noise 
are independent of system parameters

BDP Condition: 𝜆Xcd Σ0
]D/EΣbΣ0]D/E

D/E
≥ 𝑐 𝛾, 𝑇 𝑅 𝜀

Opt. noise: Σb∗ = 𝑐 𝛾, 𝑇 E𝑅 𝜀 EΣ0

Main result 4
Input noise mechanism
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◦ Objective
◦ To protect input data to control systems
◦ Previous research does not consider distant data sets

◦ Results
◦ Introduced Bayesian differential privacy (BDP) to linear dynamical systems
◦ Provided privacy guarantees even for distant data sets
◦ Derived the minimum energy Gaussian noise guaranteeing BDP
◦ Privacy VS. information utility

◦ Future work
◦ Privacy protection in the infinite horizon
◦ Difficulty: our privacy parameter 𝑐 𝛾, 𝑇 is increasing function of 𝑇
◦ Noise → ∞ as 𝑇 → ∞

Summary

BDP condition: 

𝜆./0 Σ1
2!/"Σ4Σ12!/"

!/"
≥ 𝑐 𝛾, 𝑇 𝑅 𝜀

0 100 200 300 400
0

5

10

15

20

25

30
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