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Motivation

• Stable power supply under the widely introduced renewable energies 

– Evaluating the impact of wind power fluctuation on power system quality

JST CREST
System Theory for Harmonized Power System Control Based on Photovoltaic Power Prediction
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Motivation: Renewables are uncontrollable

• Long-term ( >20 [min] )

– Thermal unit output may reach its upper/lower limit

• Short-term ( 1～20 [min] )

– Thermal output change speed may reach its limit.
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• Quantification required

– Power plant dynamics

– Wind power uncertainty
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Motivation: Extremum event

• The fluctuation of wind power generation is usually small, but it becomes 
extremely large due to the occurrence of gusts and turbulence
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Motivation: Power law 

• Power law (a.k.a. scale-free property)

– linear in log-log scale

Frequency deviation histogram of PS
interconnected with wind power

∼ |𝑓|!".$%%
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Outline

• Gaussian distribution revisited

– Affinity to linear systems, its limitation and generalization

• Key theoretical results

– Linear system analysis and equivalent linearization

• New application

– Control systems privacy

• Sparsity VS rare events

– Sparse optimal stochastic control
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Rationale: Emergence of Gaussianity

• Central Limit Theorem

– Average of independent random variables having finite 
variance converges to a Gaussian.

• Wiener process

– If a stochastic process is almost continuous and has 
i.i.d. increment, then it is a Wiener process. 
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Mathematical property

• Simple density function characterized only by two parameters

– 𝜑 𝑥 ∝ exp − &!' !

"(!
, 𝜎: SD, 𝜇: mean

• Simple expression for characteristic function

– 𝔼 exp −i𝜔𝑥 = exp(i𝜇𝜔 − 𝜎"𝜔")

• Superposition principle

– Gaussian r.v. + Gaussian r.v. = Gaussian r.v.

• Conjugation (closed under Bayes estimation), to list a few
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Superposition and linear systems

• If the input signal is i.i.d. Gaussian, the output signal of linear systems are 
Gaussian.

– Discrete-time case
• 𝑥!"# = 𝐴𝑥! + 𝐵𝑣!, 𝑣! ∼ i.i.d. Gaussian

• 𝑥!, ∀𝑘 and stationary distributions are Gaussian

– Continuous-time case
• 𝑑𝑥$ = 𝐴𝑥$𝑑𝑡 + 𝐵𝑑𝑊$, 𝑊$: Wiener process

• 𝑥$, ∀𝑡 and stationary distributions are Gaussian

Linear 
system

𝑣! 𝑥!

�̇�" 𝑥"



Limitation: Quickly decaying tails

• Density function decays in a square exponential manner.

– Large variance does not imply heavy tail.  

𝜑 𝑥 ∝ exp −
𝑥#

2𝜎#
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Generalization:  𝛼 -Stable distribution  𝑥 ∼ 𝑆)(𝜇, 𝜎)

• Simple density function characterized only by two parameters (Gaussian if 𝛼 = 2)

– 𝜑 𝑥 ∝ exp − !"# !

$%!
, 𝜎: SD, 𝜇:mean

• Simple expression for characteristic function

– E exp −i𝜔𝑥 = exp(i𝜇𝜔 − 𝜎&|𝜔|&)

• Central Limit Theorem

– Average of independent random variables
having finite variance converges to a stable distribution.

• “Stable” has nothing to do with “dynamical stability”.

three
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Stable distribution 𝑥 ∼ 𝑆)(𝜇, 𝜎)

• Tails of density functions follow power law. 

– Suitable for dealing with rare events

• Superposition principle

– Affinity to linear systems

• Careful mathematical treatment

– Unbounded variance, etc

Log-log plot of pdf

𝛼 determines the slope

∼ 𝑥2(#"4)
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Stable process

• Wiener process: 𝑊* ∼ 𝑁 0, 𝑡
– Scale (variance) = time 𝑡

• Stable process: 𝐿* ∼ 𝑆)(0, 𝑡+/))
– Scale = 𝑡"/)

𝛼 = 2 𝛼 = 1.9

Sample paths
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Outline

• Gaussian distribution revisited

– Affinity to linear systems, its limitation and generalization

• Key theoretical results

– Linear system analysis and equivalent linearization

• New application

– Control systems privacy

• Sparsity VS rare events

– Sparse optimal stochastic control
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Modeling example revisited: Power network

1. Wind fluctuation model
2. Calculate the stationary distribution
3. Effect of nonlinearity

Wind fluctuation

Capacity
(saturation)

Thermal plant

Want to know the stationary 
distribution without 
sample path generation
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Frequency domain model

• Theorem 1:   For any 𝛼 ∈ (1,2], 𝑝 ∈ −1, 𝛼 , 𝜔,

≈ Power spectrum density
= Frequency gain of 

transfer function

Gain diagram fittingEasily computable 
from data

𝛼 stable process
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Stationary distribution of linear systems driven by stable process

• Theorem 2:   For any 𝛼 ∈ (1,2] and stable 𝐺 𝑠 = 𝑐 𝑠𝐼 − 𝐴 !+𝑏,

the stationary distribution of 𝑦* is 𝑆) 0, ||𝑐𝑒2*𝑏||) . 

– ||𝑓||) ≔ ∫ 𝑓 𝑡 )𝑑𝑡
"
#

– Same 𝛼 as input noise

– Stationary variance is 𝐿)-norm of impulse response.

𝛼 stable process
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Generalized plant representation

• If the nonlinearity is negligible, the 
stationary output distribution can be 
obtained analytically by Theorem 2. 

𝑑𝑥$ = 𝐴𝑥$𝑑𝑡 + 𝐵𝑢$𝑑𝑡 + 𝑏𝑑𝐿$
𝑓$ = 𝑐6𝑥$
𝑦$ = 𝐶7𝑥$
𝑢$ = sat8 𝑦$

𝑥! ∈ ℝ" : State,  𝑏, 𝑐#$ ∈ ℝ" 𝐴, 𝐵, 𝐶% : Matrices
𝐿! : Stable process with parameter 𝛼

----------------------------------------------------------- �̇�! ∈ ℝ

𝑓! ∈ ℝ

𝑦! ∈ ℝ&𝑢! ∈ ℝ&

Noise Evaluation output

ObservationInput

sat$!
⋮

sat$"
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Equivalent linearization

• Linear gain 𝐾 ∈ (0,1) that minimizes the error variance

• For 𝑥 ∼ 𝑁 0, 𝜎" , the optimal 𝐾 = erf A
"(

with erf 𝑥 ≔ +
B ∫!&

C& e!D!𝑑𝑧.

• Theorem 3:

For 𝑥 ∼ 𝑆) 0, 𝜎" , the optimal 𝐾 = min(1, 𝑑/𝜎𝛾))

𝐾
Saturation onto [−𝑑, 𝑑]

𝑑−𝑑

Deadzone Friction

Saturation
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Equivalent linearization in the feedback loop

• Variance of 𝑦 determines the 
approximated linear gain 𝐾 .

– 𝐾 = 𝑓 𝜎E = min(1, 𝑑/𝜎E𝛾))
• The gain 𝐾 determines the 

stationary distribution of 𝑦.

– 𝜎E = 𝑔(𝐾)

• The solution to 𝐾 = 𝑓(𝑔(𝐾))
– Theoretical error bound ≈ 𝐾

�̇�! ∈ ℝ

𝑓! ∈ ℝ

𝑦! ∈ ℝ&𝑢! ∈ ℝ&

Noise Evaluation output

ObservationInput

sat$!
⋮

sat$"
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Example: Proposed method vs Monte Carlo

Proposed
(<1sec)

Error bounds

Monte Carlo

#Samples
≒1min ≒10min ≒100min

#Samples and MC average

Rare event simulation requires 
too many samples.

Proposed

Monte Carlo

Responsiveness of the controller
Lo

w
 q

ua
lit

y

Expensive

Physical parameter 𝑇' and stationary error
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Outline

• Gaussian distribution revisited

– Affinity to linear systems and its limit

• Key theoretical results

– Linear system analysis and equivalent linearization

• New application

– Control systems privacy

• Sparsity VS rare events

– Sparse optimal stochastic control
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Control systems security

• Utility of user data with private information

• Need for control method considering privacy protection

– Trade-off “Privacy protection level vs. information usefulness”

Controller Controller

Control
Power 
consumption data

Leakage risk 
of private data

Control

A B

Life style of House A…

Adversary
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Differential privacy

• Protection by adding noise 

– Large noise decreases the information usefulness

• Differential privacy : Difficulty of distinguishing input signals

– can be viewed as the degree of unobservability.

– Output noise statistics is crucial for the differential privacy calculation.

System

Input signals
(private information)
e.g. power consumption data

Published 
output signals

I know the system dynamics.

Adversary
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Bayesian differential privacy: Example

Same differential 
privacy level

Controller

Private data

Published output data

Intentional noise

Reference

No noise
(good tracking,

no privacy)

Bayesian optimal noise
(minor deterioration)

Optimal i.i.d. noise
(not tracking at all)
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Stable distribution noise can hide outliers: Example

Adversary’s estimate

Controller

Private data

Published 
output data

Intentional noise
Want to hide sudden shiftInput

Sudden shift!

Bimodal 
(Input? Noise?)

Gaussian noiseStable distribution noise

highly private information
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Outline

• Gaussian distribution revisited

– Affinity to linear systems, its limitation and generalization

• Key theoretical results

– Linear system analysis and equivalent linearization

• New application

– Control systems privacy

• Sparsity VS rare events

– Sparse optimal stochastic control
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Sparsity

• Sparsity plays a key role of recent AI techniques.

– Image processing (MRI, EHT), ML (Dropout, LASSO)

https://eventhorizontelescope.org/
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Laplace distribution

• Popular model for heavy tail distribution

• Simple density function 𝜑 𝑥 ∝ exp −|𝑥|
– Slower decay than ∝ exp −𝑥"

• No superposition principle
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Modal trajectory estimation

• Discrete-time system

– 𝑥IC+ = 𝑓(𝑥I) + 𝐵𝑣I , 𝑦I = ℎ(𝑥I) + 𝑤I
– For observed trajectory yJ:I, estimate real trajectory xJ:I

• MAP (Maximum a posteriori) estimation

– 𝜑(xJ:I|yJ:I)
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Equivalence between modal trajectory estimate and optimal control

• MAP estimate

– 𝑥IC+ = 𝑓(𝑥I) + 𝐵𝑣I , 𝑦I = ℎ(𝑥I) + 𝑤I
– For observed trajectory yJ:I, maximize

• Optimal control 

– 𝑥 𝑘 + 1 = 𝑓(𝑥 𝑘 ) + 𝐵𝑢 𝑘
– Minimize 

𝑣I ⇔ 𝑢 𝑘

x%:!

log of prior pdfs
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Laplace prior  𝜑 𝑥 ∝ exp −|𝑥| leads to LASSO

𝑣! , 𝑤! ∼ Lap(0,1), i.i.d.

𝑣I ⇔ 𝑢 𝑘

Minimization with ℓ+ regularization

log of prior pdfs
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Sparsity of solutions of LASSO

• Ill-conditioned linear equation 𝐴𝑥 = 𝑏
– Feature extraction, Small-data ML

• The solution having the minimum ℓJ-norm 
– ℓJ-norm: number of non-zero elements
– Combinatorial optimization

• The solution having the minimum ℓ+-norm
– ℓ+-norm: sum of the absolute values of elements 
– Convex optimization
– Guarantee for the sparsity under mild assumption

𝑥 = 𝑥#, 𝑥C, … , 𝑥D E

#{𝑖: 𝑥F ≠ 0}

B
F

|𝑥F|
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Sparse optimal stochastic control

• 𝒰 ≔ {Causal {𝑢$} valued in 𝕌}
• 𝕌 ⊂ ℝG: a compact set that contains 0
• 𝑓 𝑥, 𝑢 and 𝜎 𝑥, 𝑢 are Lipschitz continuous in 𝑥 uniformly in 𝑢.

Minimize 𝔼 ∫H
I∑JK#G |𝑢$

(J)|H 𝑑𝑡 + 𝑔 𝑥I , 𝑇: final time

Subject to   𝑑𝑥$ = 𝑓 𝑥$, 𝑢$ 𝑑𝑡 + 𝜎 𝑥$, 𝑢$ 𝑑𝑤$
𝑥H = 𝑥L, {𝑢$} ∈ 𝒰 𝑥L ∈ ℝD

Sparse optimal stochastic control

𝑢
𝐿( norm (Continuous) terminal cost

𝑢())0

1 𝑢 +

ℓ+-regularization (LASSO) gives sparse solutions. 
Can we relate the sparse optimal control with its 𝐿+ counterpart?
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Result (continuity and HJB equation)

• The value function 𝑉 is continuous on ℝM× 0, 𝑇 .

• 𝑉 is a viscosity solution of the HJB equation:

Discontinuous cost 𝑢())0

1 𝑢 +
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Result (relationship with 𝐿+ optimization, discreteness)

• Equivalence between 𝐿J and 𝐿+ optimality

• For control-affine systems, the optimal control process is Bang-Off-Bang
– takes only three values of {−1, 0, 1}

𝑢())

𝑢 +

0

1
u 𝐿, optimal control problem
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Example

Minimize 𝔼 ∫H
I |𝑢$|H𝑑𝑡 + 𝑥IC

Subject to   𝑑𝑥$ = 𝑥$𝑑𝑡 + 𝑢$𝑑𝑡 + 0.1 𝑑𝑤$
𝑥H = 𝑥, 𝑢$ ∈ −1,1 ∀𝑡 ∈ 0,1

Main problem

𝑢

Minimize 𝔼 ∫H
I |𝑢$|'𝑑𝑡 + 𝑥IC

Subject to   𝑑𝑥$ = 𝑥$𝑑𝑡 + 𝑢$𝑑𝑡 + 0.1 𝑑𝑤$
𝑥H = 𝑥, 𝑢$ ∈ −1,1 ∀𝑡 ∈ 0,1

Equivalent relaxed problem

𝑢
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Example:   𝑑𝑥* = 𝑥*𝑑𝑡 + 𝑢*𝑑𝑡 + 0.1 𝑑𝑤* , 𝑡 ∈ 0,1

• Blue, red, yellow : 
𝐿+ optimal sample paths

• Black:
LQG optimal sample paths

Switching curve (𝜎 = 0.1)
〃 (𝜎 = 0)

𝑢 = −1

𝑢 = 0

The control is switched off.

Time

𝑥

Time

𝑥

𝑢 𝑢 = 0

𝑢 = −1

𝑢 = 1

0
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Rare Events Modeling for Linear Estimation and Control

• Gaussian distribution revisited
– Affinity to linear systems, its limitation and generalization

• Key theoretical results
– Linear system analysis and equivalent linearization

• New application
– Control systems privacy

• Sparsity VS rare events
– Sparse optimal stochastic control       ← Ito, K, Automatica, 2021

伊藤 海斗，加嶋 健司，

動的システムにおけるレアイベントモデリングとその応用
―安定分布によるアプローチ―,
電子情報通信学会 基礎・境界ソサイエティ Fundamentals 
Review, Vol. 14, Issue 4, pp. 269-278, 2021.


